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Abstract: In a mixture of individuals from different populations, population proportions and individual 11 

identities are estimated by comparing the characteristics of individuals in the mixture to a (usually) 12 

genetic baseline of population-specific characteristics. Using simulated data sets, we examined the 13 

performance of a genetic mixture analysis that incorporated data on non-baseline character state 14 

frequencies. Population-specific state frequencies of non-baseline characters were well-estimated in many 15 

scenarios. We found benefits of incorporating non-baseline characters in mixture analysis; both individual 16 

assignments and estimates of population proportions were improved. However, both the sample size and 17 

the quality of the baseline data were more important. We did not see any improvement in estimating 18 

baseline character state frequencies even when highly informative non-baseline data was used. Our results 19 

suggest that non-baseline data might improve mixture analyses, and we note that population-specific 20 

estimates of non-baseline character state frequencies are often useful in and of themselves.  21 

 22 

Highlights: 23 

• Population-specific differences in non-baseline characters can be estimated from a mixture  24 

• Non-baseline characters only slightly improved estimates of population proportions in a mixture 25 

• Non-baseline characters are more useful in assigning population identities to individuals  26 

• Non-baseline characteristics may be useful in other ways; e.g., age and size is related to mortality  27 

• Individual assignment allows better spatio-temporal resolution than mixture analysis 28 

keywords: population mixtures, mixture analysis, Bayesian statistics, genetic analysis, genetic baseline 29 

  30 
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1. Introduction 31 

The Bayesian mixture analysis estimation methodology developed by Pella and Masuda (2001) uses a 32 

baseline of character state frequencies (such as the frequency of a specific allele at a locus) in each 33 

population to provide probability distributions for the proportions of each population in a mixture. As a 34 

part of its calculation methodology, it also provides the probability that an individual in a mixture belongs 35 

to a particular population. One novel aspect of this particular Bayesian approach is that rather than simply 36 

making inference about the mixture from baseline data, it acknowledges that the baseline data also comes 37 

from a sample that may not be fully representative of the underlying population; it then uses data from the 38 

mixture to improve the estimates of the character state frequencies in each population. That is, instead of 39 

thinking of this methodology as a way to estimate proportions in a mixture, it can instead be viewed as a 40 

way to use mixture data to help estimate population characteristics. 41 

This leads to several hypothetical questions. First, could this approach be used to estimate the frequency 42 

in a population of alternative states of characters for which there are no baseline data? For example, 43 

salmon populations that migrate to sea and are caught in a mixed-stock fishery might differ in age or 44 

length frequencies when they are caught (Larson and others 2013; Myers and others 2007). These age and 45 

length frequencies at the time and location where the fishery occurs would not be a part of the baseline 46 

data, since baseline data are collected from fish of previous generations on the spawning grounds (Guthrie 47 

III and others 2015; Seeb and others 2007). A few recent studies have demonstrated the practicality of 48 

estimating the population-specific frequencies of non-baseline character states (e.g., Moran and others 49 

2014; Tsehaye and others 2016).  50 

Second, are these non-baseline character states useful for better characterizing the origin of an individual 51 

organism in a mixture? Such an improvement would be quite helpful – large samples from a mixture are 52 

required for estimating population frequencies, often forcing aggregation of samples from large areas and 53 

long periods of time. The resulting coarse spatio-temporal resolution limits our ability to explore 54 

questions about fine scale population distribution and migratory patterns. For some management 55 
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purposes, such as enforcing endangered species protections, determining what population an individual 56 

originated from is essential (Nielsen and others 2012; Ogden and Linacre 2015).  57 

Either case seems reasonable. For example, if a population is characterized by a smaller than average size, 58 

it seems intuitive that noting that an individual in a mixture is small should increase our certainty that it is 59 

a member of that population. However, it’s also plausible that the information provided by size is “used 60 

up” in estimating the population-specific size distributions, resulting in no improvement in estimating the 61 

origin of individuals.  62 

Finally, assuming the state frequencies of characters not sampled in the baseline could be estimated, 63 

would these characters then be useful for better characterizing the makeup of the population mixture? For 64 

example, could one use the age or length of an individual salmon caught in a mixed-stock fishery to better 65 

ascertain its identity, and thus improve estimates of the proportion of each population in the mixture? 66 

In this study, we use simulated data to examine under which circumstances state frequencies of a non-67 

baseline character can be estimated using data from a mixture, whether using such characters improves 68 

estimates of baseline character state frequencies, and when using a non-baseline character in a mixture 69 

analysis improves estimates of population proportions and/or increases the accuracy of assignment of 70 

individuals to their population of origin. 71 

 72 

2. Methods 73 

2.1 Simulated data 74 

We simulated baseline data for four populations with two independent baseline characters. The first 75 

character had four possible states, and frequencies differed among each population. The second character 76 

had two states, and pairs of populations had identical frequencies, mimicking a regionally-varying 77 

character. We simulated baseline data by randomly generating state frequencies for each character from 78 

each population. Each character’s baseline sample state frequencies were determined by generating a 79 
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random draw from a Dirichlet distribution whose parameters were the product of the true frequencies and 80 

different sample sizes.  81 

We then simulated a mixture where 70% of the individuals came from one population and 10% each 82 

came from the other three populations. Each individual in the mixture had character states drawn 83 

randomly from its population's true character state frequencies. In addition to the two characters contained 84 

in the baseline, each individual was assigned a state for another independent character for which there 85 

was no baseline data. There were four states for this character, and state frequencies differed among the 86 

four populations. 87 

 88 

2.2 Scenarios investigated 89 

We created scenarios that differed in: the number of individuals sampled in each population to create the 90 

baseline (20, 100, 500), number of individuals sampled in the mixture (also 20, 100, and 500), the 91 

contrast among populations in state frequencies of the two baseline characters (Table 1), and the contrast 92 

among populations in state frequencies of the non-baseline character (Table 1). These scenarios are 93 

abbreviated in Figures using the sample size followed by two letters, the first of which gives the contrast 94 

in the baseline characters and the second that of the non-baseline character. For example, “100LH” 95 

indicates that sample sizes (both baseline and mixture) were 100, that baseline characters had low 96 

contrast, and that the non-baseline character had high contrast. 97 

 98 

2.3 Computation 99 

For each scenario, we simulated 1000 sets of data. We applied a slightly modified version of the Pella-100 

Masuda Bayesian estimation methodology (2001) to each dataset, and estimated both the proportion of 101 

each population in the mixture and the frequencies of alternative states of each character in each 102 

population. The posterior distributions of the estimates were compared to the true values. At each 103 
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iteration of the MCMC calculation in the Pella-Masuda methodology, each individual in the mixture is 104 

assigned a population identity (see below); after convergence, we tracked the frequency of assignment of 105 

the simulated individuals to the correct population. We tracked how well the state frequencies of the non-106 

baseline character were estimated, how well the state frequencies of the baseline characters were 107 

estimated, and whether and to what extent using an informative non-baseline character improved 108 

estimates of baseline frequencies and assignment of individuals in the mixture to their population of 109 

origin. 110 

The Bayesian statistical model of the data and parameters was as follows: 111 

The baseline data Y = [yijh], where yijh is the count of state h of character j in the baseline sample of size ni 112 

from population i.  113 

yij. ~ multinomial(ni, qij.), where qijh is the true frequency of state h of character j in population i. 114 

(qij1, qij2, ...) ~ Dirichlet(βj1, βj2, …), under the assumption that state frequencies exhibit some degree of 115 

similarity among populations (this assumption was not true for our simulated data, but is a plausible 116 

assumption in most real-world applications). 117 

Simplifying Pella and Masuda’s (2001) approach, we set a weakly informative prior for the q’s for 118 

character j as a Dirichlet distribution, with the value of its parameters βjh equal to the unweighted average 119 

of the sampled state frequencies across all populations (i.e., Σhβjh = 1). For the non-baseline character, the 120 

parameter values were set to 1/H, where H was the number of states for the character.  121 

The mixture data X = [xm], where xm is the “genotype”, or set of character states of individual m in the 122 

mixture. 123 

Pr(xm comes from stock i) is proportional to pi × Pr(xm | stock i) 124 

Pr(xm | stock i) = qi1m × qi2m ×... (if continuous characters are involved, the frequency is replaced by the 125 

probability density for the observed state value of the character (Bromaghin and others 2011)). 126 
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Following Pella and Masuda (2001), an uninformative prior for the p’s was Dirichlet(1/I, 1/I, …), where I 127 

is the total number of populations. 128 

Computation of the MCMC sample from the posterior distributions was accomplished with a Gibbs 129 

sampler, which involves a sequence of draws from distributions of parameters conditional on the current 130 

values of the other parameters. Computation was simplified by using a data augmentation step (Gelman 131 

and others 2014; Pella and Masuda 2001). At each iteration of the MCMC algorithm, individuals in the 132 

mixture were assigned a population of origin by random draw based on the current probabilities an 133 

individual with their character states originated from each population. Thus, each iteration of the Gibbs 134 

sampler consisted of the following steps: 135 

1.  Assign a random population identity to each individual in the mixture sample, where the probability 136 

of assignment to population i is proportional to the current value of pi × Pr(xm | stock i). 137 

2.  Draw random values for the proportion of each population (pi) in the mixture from a Dirichlet 138 

distribution where the i-th parameter = 1/I + the count of all individuals in the mixture assigned to 139 

population i. 140 

3.  Draw random values for the population-specific state frequencies of all characters, baseline and non-141 

baseline, where the frequency of state h of character j in population i is drawn from a Dirichlet with 142 

the h-th parameter = βjh + yijh + count of state h in all mixture individuals assigned to population i. 143 

Based on preliminary trials, we found that 1000 iterations of the MCMC algorithm were sufficient to 144 

achieve convergence (Gelman’s R << 1.1). Accordingly, each MCMC chain was run for 2000 iterations, 145 

and inference was based on the last half of the series. 146 

 147 

3. Results 148 

The ability to estimate population-specific frequencies of the states of a non-baseline character was 149 

affected both by the sample size and by the degree of contrast in the baseline character state frequencies. 150 
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At sample sizes of 500, the estimates of non-baseline state frequencies were almost identical to the true 151 

values (Fig. 1a). This was also true with a smaller sample size of 100, as long as the baseline contrast was 152 

high. The width of the 90% credible interval was strongly affected by both the sample size (1st part of 153 

scenario abbreviation) and the contrast in the baseline characters (2nd letter of scenario, Fig. 1b).  154 

Although no scenario showed any bias in estimating frequencies of a baseline character (Fig. 2a), the 155 

width of the 90% credible interval was strongly affected by sample size, and was also improved when the 156 

baseline character had higher contrast (Fig. 2b). Including a non-baseline character in the analysis did 157 

very little to improve estimates of baseline character state frequencies, irrespective of the amount of 158 

contrast among stocks in non-baseline state frequencies. Even when the non-baseline character was fixed 159 

at different states in different populations, little to no improvement in bias or precision was observed (Fig. 160 

2, scenarios ending in “P”) 161 

Including non-baseline characters did improve the accuracy of population assignments for individuals in a 162 

mixture, but only slightly (Fig. 3). The accuracy of individual assignments depended mainly on the 163 

contrast in the baseline characters, and to a smaller extent on sample sizes. 164 

Under some circumstances, including a non-baseline character also improved the precision (Fig. 4b) of 165 

estimates of population proportions in the mixture. For instance, with a sample size of 500 and low 166 

contrast in baseline characters, the average width of the 90% credible interval for the proportion of 167 

population 1 in the mixture decreased from 0.30 to 0.18 when a non-baseline character that was fixed at 168 

different states in different stocks was included (Fig. 4b, 500LN vs. 500LP). The contrast in the baseline 169 

characters and the sample size showed larger effects, however. Sample size had a fairly large effect on 170 

bias when the baseline contrast was low (left half of Fig. 4a), while the contrast in baseline characters 171 

affected both bias and precision (left vs. right half of Fig. 4a&b). 172 

 173 
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4. Discussion 174 

The stock-specific state frequencies of non-baseline characters can be estimated fairly well from mixture 175 

data, given adequate sample sizes and contrast in the baseline characters. Non-baseline characters can 176 

provide some improvement in the estimate of population proportions in a mixture or in identifying the 177 

population of origin of individuals in a mixture. Our results suggest that analysts performing mixture 178 

analysis should consider including data on non-baseline characters. However, the improvements resulting 179 

from including non-baseline characters are small relative to the effects of sample size or of a baseline 180 

with strong contrast among populations. Assembling a comprehensive and informative baseline and 181 

obtaining a representative and adequate sample from both baseline individuals and individuals in the 182 

mixture of interest should be a high priority. Using non-baseline characters made no noticeable 183 

improvement in estimating state frequencies of baseline characters.  184 

The ability to estimate differences among populations in characteristics not present in the baseline can be 185 

quite useful for management purposes. Bromaghin et al. (2011) and Moran et al. (2014), in developing the 186 

methodology employed here, examined differences in fecundity and disease prevalence among 187 

populations. Studies using less sophisticated methodologies (see list in Moran et al. 2014) have looked at 188 

an even wider range of characters. Tsehaye et al. (2016) were able to estimate population-specific 189 

(relative) recruitment by incorporating age or length data into mixture analysis, but made some strong 190 

assumptions about the underlying population dynamics and life histories of the populations contributing 191 

to the mixture. 192 

One immediate practical application would be estimating stock-specific ocean size frequencies, a non-193 

baseline character, of Chinook salmon (Onchoryhnchus tshawytscha) taken as bycatch in Bering Sea and 194 

Gulf of Alaska groundfish fisheries. A recent study of the effect of this bycatch on weak stocks in western 195 

Alaska river systems estimated that at its peak, this bycatch reduced returning Chinook abundance by 7% 196 

(Ianelli and Stram 2015), although current impacts are much smaller. However, this analysis may have 197 

inadvertently overestimated the reduction in western Alaska stocks. Because of the proximity of these 198 
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fisheries to the western Alaska populations, bycaught individuals from western Alaska are likely younger 199 

than individuals from other populations that make a significant contribution, such as British Columbia or 200 

the Pacific Northwest of the United States (Larson and others 2013; Myers and others 2007); these length 201 

differences might be informative enough to improve the estimates of the proportions of these stocks in the 202 

mixture.  203 

Even if the estimates of proportions were not improved, estimating the population-specific length 204 

distributions could still be valuable. Younger fish experience a higher cumulative natural mortality before 205 

returning to spawn, so that ignoring the younger age structure of western Alaska fish would result in an 206 

overestimate of the bycatch-induced reduction in adult returns to Western Alaska, and an underestimate 207 

for other stocks.  208 

While some non-baseline characters may be temporally stable, others, like a population’s length 209 

distribution, could vary from year to year. For example, Chinook salmon from Western Alaska stocks 210 

would consistently have a larger proportion of small individuals in the Bering Sea than stocks from the 211 

Pacific Northwest. However, the size distribution would undoubtedly fluctuate from year to year due to 212 

inter-annual differences in cohort size and in growth conditions. Such inter-annual differences could 213 

easily be incorporated into the estimation procedure as random effects drawn from a hyperdistribution. 214 

One promising result of our simulations was that the probabilistic assignment of individuals to 215 

populations was improved by including non-baseline characters. Mixture analysis has been recommended 216 

over individual assignment methodologies when the goal is to estimate the proportions in a mixture 217 

(Koljonen and others 2005). However, mixture analysis often requires large sample sizes to assign 218 

proportions with reasonable uncertainty (Templin and others 2011). This requirement for large sample 219 

sizes is problematic when samples are scarce. For example, in investigating the population origins of 220 

Chinook salmon bycatch in Bering Sea groundfish fisheries, obtaining adequate sample sizes for mixtures 221 

requires aggregating over large areas and long periods, restricting inference to coarse spatial and temporal 222 

resolution (Ianelli and Stram 2015). Individual assignments, even if each individual sampled has some 223 



Draft – Please do not circulate without permission of author 
 

probability of belonging to each of several stocks (or to an unknown stock) (Manel and others 2005), 224 

might allow estimation of stock-specific distributions and migration patterns at a finer resolution (Teel 225 

and others 2015). 226 

For clarity and to simplify calculations, the simulations in this study produced data that differed 227 

significantly from the types of genetic data typically used in most analyses, where there are many more 228 

genetic characters, and these characters have many more possible states. Nonetheless, the essentials of the 229 

simulation, where populations differed in baseline and non-baseline characteristics, provides qualitative 230 

guidance on what non-baseline characters can and cannot contribute to a mixture analysis. A useful 231 

follow-up study would be to take a high-quality real dataset and to artificially create non-baseline 232 

characters by excluding their baseline data, and to use subsets of baseline characters to create high- and 233 

low-contrast baseline datasets. 234 
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Table 1. State frequencies for each character at each level of contrast. 302 

Contrast level State values 

low baseline Character 1: frequency of state i = 0.4 in population i, = 0.2 in other populations 

Character 2: state 1 = 0.67 in populations 1-2, 0.33 in populations 3-4 

 state 2 = 0.33 in populations 1-2, 0.67 in populations 3-4  

high baseline Character 1: frequency of state i = 0.7 in population i, = 0.1 in other populations 

Character 2: state 1 = 0.9 in populations 1-2, 0.1 in populations 3-4 

 state 2 = 0.1 in populations 1-2, 0.9 in populations 3-4  

low non-baseline frequency of state i = 0.4 in population i, = 0.2 in other populations 

high non-baseline frequency of state i = 0.7 in population i, = 0.1 in other populations 

perfect non-baseline frequency of state i = 1.0 in population i, = 0.0 in other populations 

 303 

 304 

 305 
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307 

 308 

Figure 1. In top figure the bars show the mean estimated frequency of state #1 in the non-baseline 309 

character in population #1 from 1000 simulation trials. Diamonds show the true frequency, which was 310 

0.4, 0.7, or 1.0 depending on whether the non-baseline contrast was “L”, “H”, or “P” (last letter of 311 

scenario label). The first two parts of the scenario label on the x-axis indicate sample size (20, 100, 500) 312 

and baseline contrast (“L” = low, “H” = high; see Table 1). The bottom figure shows the average width of 313 

the 90% credible intervals. 314 

  315 
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316 

 317 

Figure 2. Top figure shows the average estimated frequency of state #1 in the baseline character #1 in 318 

population #1 from 1000 simulation trials. The true frequency was 0.4 or 0.7, depending on whether the 319 

baseline contrast was “L” or “H” (first letter in scenario label). The first part of the scenario label 320 

indicates sample size (20, 100, 500) and the last letter the non-baseline contrast (“N” = no character, 321 

“L” = low, “H” = high, “P” = perfect; see Table 1). The bottom figure shows the average width of the 322 

90% credible intervals.  323 

 324 

  325 
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326 
Figure 3. Proportion of individuals in simulated mixtures assigned to the correct population. Left graphs 327 

are low baseline contrast, right are high. From top to bottom, graphs are for sample sizes of 20, 100, and 328 

500, respectively. From left to right, columns are with no non-baseline character, then low, high, and 329 

perfect contrast in the non-baseline character. 330 
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332 

 333 

Figure 4. Top graph shows the average estimated frequency of stock #1 in simulated mixtures; the true 334 

frequency was 0.7. The first part of the scenario label indicates sample size (20, 100, 500), the first letter 335 

the baseline contrast (“L” = low, “H” = high; see Table 1), and the last letter the non-baseline contrast 336 

(“N” = no character, “L” = low, “H” = high, “P” = perfect; see Table 1). The bottom figure shows the 337 

average width of the 90% credible intervals. 338 
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